Stereo Vision and Markov Random Fields
نویسنده
چکیده
Here we describe the stereo matching problem from computer vision, and some techniques for solving it as an optimization problem, including loopy belief propagation over Markov random fields. We also discuss some possible applications of these techniques to problems in natural language processing.
منابع مشابه
Stereo matching with partial information
In this paper, we address the stereo matching problem in stereo videos using partially informed Markov Random Fields (MRFs) using the motion information between subsequent frames as a side information. We use the motion vectors within one of the videos to regularize the disparity estimate using this motion field. The proposed scheme enables us to obtain good disparity estimates using faster and...
متن کاملEfficiently Learning Random Fields for Stereo Vision with Sparse Message Passing
As richer models for stereo vision are constructed, there is a growing interest in learning model parameters. To estimate parameters in Markov Random Field (MRF) based stereo formulations, one usually needs to perform approximate probabilistic inference. Message passing algorithms based on variational methods and belief propagation are widely used for approximate inference in MRFs. Conditional ...
متن کامل3D Hand Motion Evaluation Using HMM
Gesture and motion recognition are needed for a variety of applications. The use of human hand motions as a natural interface tool has motivated researchers to conduct research in the modeling, analysis and recognition of various hand movements. In particular, human-computer intelligent interaction has been a focus of research in vision-based gesture recognition. In this work, we introduce a 3-...
متن کاملA New Approach to Automatic Reconstruction of a 3-D World Using Active Stereo Vision
In this paper, we propose a new automatic approach to reconstructing 3-D environments using an active binocular head. To efficiently store and access the depth estimates, we propose the use of an inverse polar octree which can transform both unbounded depth estimates and unbounded estimation errors into a bounded 3-D space with appropriate resolution. The depth estimates are computed by using t...
متن کاملTree-based iterated local search for Markov random fields with applications in image analysis
The maximum a posteriori (MAP) assignment for general structure Markov random fields (MRFs) is computationally intractable. In this paper, we exploit tree-based methods to efficiently address this problem. Our novel method, named Tree-based Iterated Local Search (T-ILS) takes advantage of the tractability of tree-structures embedded within MRFs to derive strong local search in an ILS framework....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012